Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(3): 2012-2022, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38450675

RESUMO

Triple-negative breast cancer (TNBC) remains a clinical challenge due to molecular, metabolic, and genetic heterogeneity as well as the lack of validated drug targets. Thus, therapies or delivery paradigms are needed. Gold-derived compounds including the FDA-approved drug, auranofin have shown promise as effective anticancer agents against several tumors. To improve the solubility and bioavailability of auranofin, we hypothesized that the nanodelivery of auranofin using biodegradable chitosan modified polyethylene glycol (PEG) nanoparticles (NPs) will enhance anticancer activity against TNBC by comparing the best nanoformulation with the free drug. The selection of the nanoformulation was based on synthesis of various chitosan PEG copolymers via formaldehyde-mediated engraftment of PEG onto chitosan to form [chitosan-g-PEG] copolymer. Furthermore, altered physiochemical properties of the copolymer was based on the formaldehyde ratio towards nanoparticles (CP 1-4 NPs). Following the recruitment of PEG onto the chitosan polymer surface, we explored how this process influenced the stiffness of the nanoparticle using atomic force microscopy (AFM), a factor crucial for in vitro and in vivo studies. Our objective was to ensure the full functionality and inherent properties of chitosan as the parent polymer was maintained without allowing PEG to overshadow chitosan's unique cationic properties while improving solubility in neutral pH. Hence, CP 2 NP was chosen. To demonstrate the efficacy of CP 2 NP as a good delivery carrier for auranofin, we administered a dose of 3 mg/kg of auranofin, in contrast to free auranofin, which was given at 5 mg/kg. In vivo studies revealed the potency of encapsulated auranofin against TNBC cells with a severe necrotic effect following treatment superior to that of free auranofin. In conclusion, chitosan-g-PEG nanoparticles have the potential to be an excellent delivery system for auranofin, increasing its effectiveness and potentially reducing its clinical limitations.


Assuntos
Quitosana , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Quitosana/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Auranofina/farmacologia , Auranofina/uso terapêutico , Polímeros/química , Polietilenoglicóis/química , Nanopartículas/química , Formaldeído/uso terapêutico
2.
ACS Appl Mater Interfaces ; 15(37): 43607-43620, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37698293

RESUMO

Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.


Assuntos
Ouro , Nanopartículas , Soroalbumina Bovina , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos
3.
J Med Chem ; 66(12): 7868-7879, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37279147

RESUMO

The preparation of cyclometalated complexes offers a path to stable materials, catalysts, and therapeutic agents. Here, we explore the anticancer potential of novel biphenyl organogold(III) cationic complexes supported by diverse bisphosphine ligands, Au-1-Au-5, toward aggressive glioblastoma and triple negative breast cancer cells (TNBCs). The [C^C] gold(III) complex, Au-3, exhibits significant tumor growth inhibition in a metastatic TNBC mouse model. Remarkably, Au-3 displays promising blood serum stability over a relevant therapeutic window of 24 h and alteration in the presence of excess L-GSH. The mechanism-of-action studies show that Au-3 induces mitochondrial uncoupling, membrane depolarization, and G1 cell cycle arrest and prompts apoptosis. To the best of our knowledge, Au-3 is the first biphenyl gold-phosphine complex to uncouple mitochondria and inhibit TNBC growth in vivo.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ouro/farmacologia , Mitocôndrias , Soro , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Compostos Organoáuricos/química , Compostos Organoáuricos/farmacologia
4.
Chem Rev ; 123(10): 6612-6667, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37071737

RESUMO

The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.


Assuntos
Artrite Reumatoide , Auranofina , Humanos , Auranofina/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Ouro , Aurotioglucose/farmacologia , Aurotioglucose/uso terapêutico , Tiomalato Sódico de Ouro/farmacologia , Tiomalato Sódico de Ouro/uso terapêutico
5.
Drug Test Anal ; 15(1): 42-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35975356

RESUMO

Based on structural similarities and equine administration experiments, Barbarin, 5-phenyl-2-oxazolidinethione from Brassicaceae plants, is a possible source of equine urinary identifications of aminorex, (R,S)-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine, an amphetamine-related US Drug Enforcement Administration (DEA) controlled substance considered illegal in sport horses. We now report the synthesis and certification of d5 -barbarin to facilitate research on the relationship between plant barbarin and such aminorex identifications. D5 -barbarin synthesis commenced with production of d5 -2-oxo-2-phenylacetaldehyde oxime (d5 -oxime) from d5 -acetophenone via butylnitrite in an ethoxide/ethanol solution. This d5 -oxime was then reduced with lithium aluminum hydride (LiAlH4 ) to produce the corresponding d5 -2-amino-1-phenylethan-1-ol (d5 -phenylethanolamine). Final ring closure of the d5 -phenylethanolamine was performed by the addition of carbon disulfide (CS2 ) with pyridine. The reaction product was purified by recrystallization and presented as a stable white crystalline powder. Proton NMR spectroscopy revealed a triplet at 5.88 ppm for one proton, a double doublet at 3.71 ppm for one proton, and double doublet at 4.11 ppm for one proton, confirming d5 -barbarin as the product. Further characterization by high resolution mass spectrometry supports the successful synthesis of d5 -barbarin. Purity of the recrystallized product was ascertained by High Performance Liquid Chromatography (HPLC) to be greater than 98%. Together, we have developed the synthesis and full characterization of d5 -barbarin for use as an internal standard in barbarin-related and equine forensic research.


Assuntos
Aminorex , Prótons , Animais , Cavalos , Oxazóis , Espectrometria de Massas
6.
Chem Commun (Camb) ; 58(73): 10237-10240, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36004570

RESUMO

Emerging synthetic development of chiral gold(III) complexes has prompted new opportunities in catalysis and material science with limited utility in biomedicine. Here, we demonstrate potential chemotherapeutic capability of [C^N]Au(III)Cl(R-DuPhos) (1-7) complexes, containing 1,2-bis[(2R,5R)-2,5-dialkylphospholano]benzene, which shows good stabilty, potent anticancer activity, and tolerability in mice.


Assuntos
Ouro , Animais , Catálise , Ouro/farmacologia , Camundongos
7.
Molecules ; 25(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291802

RESUMO

Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X/métodos , Glutationa/química , Humanos , Ligantes , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...